Refine Your Search

Topic

Author

Search Results

Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Soot Structure in a Conventional Non-Premixed Diesel Flame

2006-04-03
2006-01-0196
An analysis of the soot formation and oxidation process in a conventional direct-injection (DI) diesel flame was conducted using numerical simulations. An improved multi-step phenomenological soot model that includes particle inception, particle coagulation, surface growth and oxidation was used to describe the soot formation and oxidation process. The soot model has been implemented into the KIVA-3V code. Other model Improvements include a piston-ring crevice model, a KH/RT spray breakup model, a droplet wall impingement model, a wall-temperature heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process. Experimental data from a heavy-duty, Cummins N14, research DI diesel engine operated with conventional injection under low-load conditions were selected as a benchmark.
Technical Paper

Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-way Exhaust Catalyst

2006-04-03
2006-01-1148
The objectives of this study were 1) to evaluate the characteristics of rich diesel combustion near the stoichiometric operating condition, 2) to explore the possibility of stoichiometric operation of a diesel engine in order to allow use of a three-way exhaust after-treatment catalyst, and 3) to achieve practical operation ranges with acceptable fuel economy impacts. Boost pressure, EGR rate, intake air temperature, fuel mass injected, and injection timing variations were investigated to evaluate diesel stoichiometric combustion characteristics in a single-cylinder high-speed direct injection (HSDI) diesel engine. Stoichiometric operation in the Premixed Charge Compression Ignition (PCCI) combustion regime and standard diesel combustion were examined to investigate the characteristics of rich combustion. The results indicate that diesel stoichiometric operation can be achieved with minor fuel economy and soot impact.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Optimization of a Large Diesel Engine via Spin Spray Combustion*

2005-04-11
2005-01-0916
A numerical simulation and optimization study was conducted for a medium speed direct injection diesel engine. The engine's operating characteristics were first matched to available experimental data to test the validity of the numerical model. The KIVA-3V ERC CFD code was then modified to allow independent spray events from two rows of nozzle holes. The angular alignment, nozzle hole size, and injection pressure of each set of nozzle holes were optimized using a micro-genetic algorithm. The design fitness criteria were based on a multi-variable merit function with inputs of emissions of soot, NOx, unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function value were used to limit the maximum in-cylinder pressure and the burned gas temperature at exhaust valve opening. The optimization produced a 28.4% decrease in NOx and a 40% decrease in soot from the baseline case, while giving a 3.1% improvement in fuel economy.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Reduction of Emissions and Fuel Consumption in a 2-Stroke Direct Injection Engine with Multidimensional Modeling and an Evolutionary Search Technique

2003-03-03
2003-01-0544
An optimization study combining multidimensional CFD modeling and a global, evolutionary search technique known as the Genetic Algorithm has been carried out. The subject of this study was a 2-stroke, spark-ignited, direct-injection, single-cylinder research engine (SCRE). The goal of the study was to optimize the part load operating parameters of the engine in order to achieve the lowest possible emissions, improved fuel economy, and reduced wall heat transfer. Parameters subject to permutation in this study were the start-of-injection (SOI) timing, injection duration, spark timing, fuel injection angle, dwell between injections, and the percentage of fuel mass in the first injection pulse. The study was comprised of three cases. All simulations were for a part load, intermediate-speed condition representing a transition operating regime between stratified charge and homogeneous charge operation.
Technical Paper

Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines

2003-03-03
2003-01-0560
A radiation model based on the Discrete Ordinates Method (DOM) was incorporated into the KIVA3v multidimensional code to study the effects of soot and radiation on diesel engine performance at high load. A thermophoretic soot deposition model was implemented to predict soot concentrations in the near-wall region, which was found to affect radiative heat flux levels. Realistic, non-uniform combustion chamber wall surface temperature distributions were predicted using a finite-element-based heat conduction model for the engine metal components that was coupled with KIVA3v in an iterative scheme. The more accurate combustion chamber wall temperatures enhanced the accuracy of both the radiation and soot deposition models as well as the convective heat transfer model. For a basline case, (1500 rev/min, 100% load) it was found that radiation can account for as much as 30% of the total wall heat loss and that soot deposition in each cycle is less than 3% of the total in-cylinder soot.
Technical Paper

Premixed Diesel Combustion Analysis in a Heavy-Duty Diesel Engine

2003-03-03
2003-01-0341
Optimizations were performed on a Heavy-Duty diesel engine equipped with a conventional electronic unit injector in order to minimize fuel consumption, and emissions of NOx and particulate matter. A low speed light load case and a high speed light load case were optimized with these considerations in mind. Exhaustive parametric studies were performed in order to find sets of operating conditions that resulted in low emissions and high fuel economy. It was found for the low speed light load case (Mode 2, 25% load and 821 rev/min) that low emissions operating conditions existed at either very early or very late start-of-injection timings and high EGR (PM = 0.018 g/kW-hr, NOx + HC = 1.493 g/kW-hr with SOI = -21 degrees ATDC, 48% EGR; or 0.085 g/kW-hr PM, 1.02 g/kW-hr NOx with SOI = 4 degrees ATDC, 39% EGR).
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

Modeling the Effect of Split Injections on DISI Engine Performance

2001-03-05
2001-01-0965
A spray model for pressure-swirl atomizers that is based on a linearized instability analysis of liquid sheets has been combined with an ignition and combustion model for stratified charge spark ignition engines. The ignition model has been advanced, such that the presence of dual spark plugs can now be accounted for. Independent validation of the spray model is achieved by investigating a pressure-swirl injector inside a pressure bomb containing air at ambient temperature. In a second step, the complete model is used to estimate the performance of a small marine DISI Two-Stroke engine operating in stratified charge mode. Simulation results and experimental data are compared for several different injection timings and the agreement is generally good such that there is confidence in the predictive quality of the combustion model. Finally the model is applied in a conceptual study to investigate possible benefits of split injections.
Technical Paper

Development of an Ignition and Combustion Model for Spark-Ignition Engines

2000-10-16
2000-01-2809
A new ignition and combustion model has been developed and tested for use in premixed spark-ignition engines. The ignition model is referred to as the Discrete Particle Ignition Kernel (DPIK) model, and it uses Lagrangian markers to track the flame-front growth. The model includes the effects of electrode heat transfer on the early flame kernel growth process, and it is used in conjunction with a characteristic-time-scale combustion model once the ignition kernel has grown to a size where the effects of turbulence on the flame must be considered. A new term which accounts for the effect of air-fuel ratio, was added to the combustion model for modeling combustion in very lean and very rich mixtures. The flame kernel size predicted by the DPIK model was compared with measurements of Maly and Vogel. Furthermore, predictions of the electrode heat transfer were compared with data of Kravchik and Heywood. In both comparisons the model predictions were in good agreement with the experiments.
X